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A brief examination of some issues of current interest in polymer physical chemistry is provided. Emphasis
is placed on topics for which the interplay of theory and experiment has been particularly fruitful. The
dominant theme is the competition between conformational entropy, which resists distortion of the average
chain dimensions, and potential interactions between monomers, which can favor specific conformations or
spatial arrangements of chains. Systems of interest include isolated chains, solutions, melts, mixtures, grafted
layers, and copolymers. Notable features in the dynamics of polymer liquids are also identified. The article
concludes with a summary and a discussion of future prospects.

1. Introduction

1.A. General Remarks. Macromolecules form the back-
bone of the U.S. chemical industry, and are essential functional
and structural components of biological systems.1 Yet, the very
existence of long, covalently bonded chains was in dispute only
70 years ago. The past 50 years has seen a steady growth in
understanding of the physical properties of chain molecules, to
the point that the field has achieved a certain maturity.
Nonetheless, exciting and challenging problems remain. Poly-
mer physical chemistry is a richly interdisciplinary field.
Progress has relied on a combination of synthetic ingenuity,
experimental precision, and deep physical insight. In this article,
we present a brief glimpse at some interesting current issues
and acknowledge some notable past achievements and future
directions.
1.B. Basic Concepts.WhenN monomers join to form a

polymer, the translational entropy is reduced. However, the
entropy associated with a single molecule increases dramatically,
due to the large number of different conformations the chain
can assume.2-11 Conformational changes occur at both local
and global levels. Local conformational states with differing
energies depend on the chemical nature of substituent atoms or
side groups, X, as sketched in Figure 1. Typically, there are
three rotational conformers at every C-C bond. These states,
and the torsional energy as a function of rotation about the
middle C-C bond, are represented in Figure 2. If∆ε , kT,
there exists complete static (i.e., equilibrium-averaged) flex-
ibility. Even for higher values of∆ε/kT, where the trans
conformation is preferred, the chain will still be flexible for
largeN. We can define a statistical segment length,b, over
which the local stiffness persists;b depends on the value of
∆ε/kT.12 But, beyond this length, bond orientations are uncor-
related. The parameter which determines the overall chain
flexibility is b/L, whereL, the chain contour length, is∼N. If
b/L , 1, the chain has complete static flexibility; forb/L . 1,
the chain is a rigid rod.
Similarly,∆E/kTdetermines the dynamical flexibility. If∆E/

kT, 1, the timeτseg∼ exp(∆E/kT) required for transT gauche

isomerizations is short (i.e., picoseconds to nanoseconds in
solution), and the chain is dynamically flexible. For higher
values of∆E/kT, dynamical stiffness arises locally. However,
for large scale motions, involving times much greater thanτseg,
the chain can still be taken to be dynamically flexible. The
chemical details of the monomers and solvent affect the local
properties,b and τseg. Macroscopic, or global, properties doX Abstract published inAdVance ACS Abstracts,July 15, 1996.

Figure 1. N monomers combine to form one linear chain, here with
an all-carbon backbone and a pendant group denoted X.

Figure 2. Schematic of the potential energy as a function of rotation
about a single backbone bond and the corresponding trans and gauche
conformers.
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not depend directly on the local static and dynamic details and
can be represented as universal functions (i.e., independent of
chemical identity) by “coarse-graining” the local properties into
phenomenological parameters. Polymer physical chemistry
deals with both the macroscopic properties, dictated by global
features of chain connectivity and interactions, and the phe-
nomenological parameters, dictated by the local details.
Connectivity leads to long-range spatial correlations among

the various monomers, irrespective of potential interactions
between monomers.13,14 Such a topological connectivity leads
naturally to statistical fractals,15 wherein the polymer structure
is self-similar over length scales longer thanb but shorter than
the size of the polymer. For the ideal case of zero potential
interactions, the monomer densityF(r) at a distancer from the
center of mass decays in three dimensions as 1/r,6,7 as shown
in Figure 3. Consequently, the fractal dimension of the chain
Df ) 2. This result is entirely due to chain entropy, but the
long-ranged correlation of monomer density can be modified
by potential interactions. In general,F(r) decays as (1/r)d-Df,
whered is the space dimension. Equivalently, the scaling law
between the average size of the polymer,e.g., the radius of
gyrationRg, andN is Rg ∼ Nν, whereν ) 1/Df. The value of
Df is determined by the compromise between the entropy arising
from topological connectivity and the energy arising from
potential interactions between monomers. For example, most
polymer coils with nonspecific short-ranged interactions undergo
a coil-to-globule transition upon cooling in dilute solutions, such
that the effective fractal dimension increases to about 3. Or,
the chain backbone may be such thatb increases at lowT; in
this case the chain can undergo a coil-to-rod transition, where
Df decreases monotonically to about 1. This competition
between conformational entropy and monomer-monomer in-
teractions represents a central theme of this article.
When specific, strong interactions such as hydrogen-bonding

or electrostatic forces are present, chain conformations can suffer
entropic frustration, as illustrated in Figure 4 for charge-bearing
monomers.16,17 In the process of forming the fully registered
state (a) between the oppositely charged groups, the chain, via
random selection, can readily form a topological state such as
(b). The chain is entropically frustrated in state (b) since the
two registered pairs greatly reduce the entropic degrees of
freedom of the chain. The chain needs to wait until the pairs
dissociate, accompanied by a release of entropy, and the process
of registry continues. This feature of entropic frustration is

common in macromolecules containing chemically heteroge-
neous subunits and in polymers adsorbing to an interface. When
a chain is frustrated by topological constraints, not all degrees
of freedom are equally accessible, and standard arguments based
on the hypothesis of ergodicity may not be applicable. The
identification of the resulting equilibrium structure is a challenge
to both experiment and theory. The kinetics of formation of
such structures is also complicated by the diversely different
free energy barriers separating the various topological states.
In general, the distance between different trajectories of the
system diverges with time, and the presence of free energy
minima at intermediate stages of evolution delays the approach
to the final optimal state.17 Several of these features are
exemplified by biological macromolecules.
1.C. Recent Developments.Synthesis.Conventional poly-

merization methods, either of the step-growth (e.g., polycon-
densation) or chain-growth (e.g., free radical) class, produce
broad molecular weight distributions and offer little control over
long-chain architectural characteristics such as branching.
Although of tremendous commercial importance, such ap-
proaches are inadequate for preparing model polymers, with
tightly controlled molecular structures, that are essential for
fundamental studies. For this reason, living polymerization has
become the cornerstone of experimental polymer physical
chemistry. In such a synthesis, conditions are set so that
growing chain ends only react with monomers; no termination
or chain transfer steps occur. If a fixed number of chains are
initiated att ) 0, random addition of monomers to the growing
chains leads to a Poisson distribution of chain length, with a
polydispersity (Mw/Mn) that approaches unity in the highN limit.
Block copolymers can be made by sequential addition of
different monomers, branched chains by addition of polyfunc-
tional terminating agents, and end-functionalized polymers by
suitable choice of initiator and terminator. Examples of chain
structures realized in this manner are shown in Figure 5.
The most commonly used technique, living anionic poly-

merization, was introduced in the 1950s.18,19 It is well-suited
to several vinyl monomers, principally styrenes, dienes, and
methacrylates. However, it suffers from significant limitations,
including the need for rigorously excluding oxygen and water,
a restricted set of polymerizable monomers, and reactivity
toward ancillary functionalities on monomers. Consequently,
there is great interest in developing other living polymerization
protocols.20 Over the past 15 years, group transfer,21 ring-
opening and acyclic diene metathesis,22-24 cationic,25,26and even
free radical27 living polymerization methods have been dem-
onstrated. Soon a much broader spectrum of chemical func-
tionalities will become routine players in the synthesis of model
polymers, and commercial products will rely increasingly on
controlled polymerization techniques.
Theory. The genesis of polymer theory is the realization that

a conformation of a polymer chain can be modeled as the

Figure 3. Schematic of a random coil polymer, and the density
distributionF(r) for b , r , Rg.

Figure 4. Illustration of (a) complete registry and (b) entropic
frustration for a chain bearing both positive and negative charges.
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trajectory of a random walker.2-11 In the simplest case, the
apparent absence of any energy penalty for self-intersection,
the statistics of random walks can be successfully applied. In
the long-chain limit, the probability distributionG(RB,N) for the
end-to-end vector of a chain, RB, is Gaussian, under these
(experimentally realizable) “ideal” conditions. NowG satisfies
a simple diffusion equation, analogous to Fick’s second law:

Thus,N corresponds to time,G to concentration, andb2 to a
diffusivity. The right-hand side simply requires that the chain
beginning at the origin arrive at RB afterN steps. When there is
a penalty for self-intersections, due to excluded volume inter-
actions between monomers, it is possible to compose a pseudo-
potential for segmental interactions. The diffusion equation now
contains an additional potential term which, in turn, depends
onG:13,28

This requires a self-consistent procedure to determineG, from
which various moments of experimental interest can be derived;
in essence, this process amounts to making an initial guess for
G, calculating the potential term, and numerically iterating until
the chosenG satisfies eq 1.2.
For multicomponent polymer systems, the local chemical

details and the various potential interactions between effective
segments can be parametrized by writing an appropriate
“Edwards Hamiltonian” (see eq 2.1 and associated discussion).7-9

Standard procedures of statistical mechanics (with varying levels
of approximation) are then employed to obtain the free energy
as a functional of macroscopic variables of experimental
interest.8,29-31 Such density functional approaches lead to liquid-
state theories derived from coarse-grained first principles.8 The
free energy so derived, reflecting a quasi-microscopic description
of polymer chemistry, is also used to access dynamics.

Simulation.32,33 Lattice walks are used to determineG for
a single chain with potential interactions, with some site potential
energy to simulate chain contacts. A key feature of this
approach is to use generating functions34-37

wherepN are probability functions describing chains ofN steps;
this greatly reduces the computational complexity. For fully
developed excluded volume, the exact method enumerates all
possible nonintersecting random walks ofN steps on a lattice;
assuming all configurations area priori equally probable,
various averages are then constructed. In the alternative Monte
Carlo method, a chain of successively connected beads and
sticks is simulated on various lattices, or off-lattice, and
statistical data describing the chain are accumulated. The stick
can be either rigid or a spring with a prescribed force constant;
the latter case is referred to as the bond-fluctuation algorithm.38

As before, the beads interact through an appropriate potential
interaction. Once an initial configuration is created, a randomly
chosen bead is allowed to move to a new position without
destroying the chain connectivity. The energy of the chain in
its new configuration is computed, and the move is accepted or
rejected using the Metropolis algorithm.39 Instead of making
local moves, so-called pivot algorithms can be used to execute
cooperative rearrangements.40,41

The use of molecular dynamics,42 in which Newton’s law is
solved for the classical equation of motion of every monomer,
has been restricted to rather short chains.43,44 Such atomistic
simulations are difficult for polymers since even a single chain
exhibits structure from a single chemical bond (ca. 1 Å) up to
Rg (ca. 10-103 Å), and the separation in time scale between
segmental and global dynamics is huge. Brownian dynamics
is an alternative method,45wherein Newton’s equation of motion
is supplemented with a friction term and a random force, which
satisfy a fluctuation-dissipation theorem at a givenT. Since
the friction coefficient is in general phenomenological, this
Langevin equation is usually written for an effective segment.
All of the above methodologies are in current use.
Experimental Techniques.Polymers require a variety of

techniques to probe their multifarious structures, dynamics, and
interactions. Polymer structure may be probed in real space,
by microscopy, and in Fourier space, by scattering. Both
approaches are important, but scattering has been more central
to the testing of molecular theory. Classical light scattering
(LS) and small-angle X-ray scattering (SAXS) have been used
for over 50 years, but small-angle neutron scattering (SANS)
has, in the past 25 years, become an essential tool.46-49 The
key feature of SANS is the sharp difference in coherent
scattering cross section between hydrogen and deuterium;
isotopic substitution thus permits measurement of the properties
of single chains, or parts of chains, even in the bulk state. All
three experiments give information on the static structure factor,
S(q):

where qb is the scattering vector ()(4π/λ) sin(θ/2), with λ the
wavelength andθ the scattering angle).S(q) generally contains
both intramolecular (“form factor”) and intermolecular (“struc-
ture factor”) correlations and in the thermodynamic limit (q f
0) measures the osmotic compressibility of the mixture.
Consequently, scattering techniques provide valuable informa-

Figure 5. Various polymer topologies achieved by living polymeri-
zation techniques.
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tion on molecular interactions, and not just structure. The
accessible length scales depend onq and are typically 30-104
nm for light, 0.5-50 nm for SANS, and 0.1-100 nm for SAXS.
This combined range exactly matches that associated with
macromolecular dimensionssmonomer sizes on the order of 1
nm, molecular sizes up to 0.5µm, and aggregates or multi-
molecular assemblies from 0.01 to 10µm. The scattering power
of individual monomers is embodied in the factorâj, which
depends on refractive index for LS, electron density for SAXS,
and nuclear properties for SANS.
Polymers exhibit dynamics over many decades of time scale,

ranging from segmental rearrangements in the nanosecond
regime to long-range chain reorganizations that can take minutes
or even days. Two classes of technique have proven particularly
revealing in recent years: measurements of rheological proper-
ties and translational diffusion. The former concerns the
response of a fluid to an imposed deformation; in the dynamic
mode, the deformation is sinusoidal in time, and frequency
variation permits investigation of different time scales of motion.
Significant progress in commercial instrumentation has made
these techniques accessible to a wide variety of researchers. The
centrality of chain diffusion to the reptation model of entangled
chain dynamics (Vide infra) spurred an explosion of technique
development and application in the late 1970s and 1980s,
methods which are now being profitably applied to a much
broader range of issues. Examples include forced Rayleigh
scattering (FRS)50 and forward recoil spectrometry (FRES);51

more established methods, such as pulsed-field gradient NMR52

and fluorescence photobleaching recovery,53 also found many
new adherents. Dynamic light scattering (DLS) has proven to
be a particularly versatile and fruitful technique. It provides
information on the dynamic structure factor,S(q,t) (see eq 2.10
and associated discussion). Although most often applied to
monitor mutual diffusion processes in solutions and blends, it
can also reflect viscoelastic properties and conformational
relaxation.54-56

The importance of the surface, interfacial, and thin film
properties of polymers has encouraged application of surface-
sensitive or depth-profiling techniques. Some of these are
familiar to the analytical chemistry communitysESCA, SIMS,
reflection infrared, and ellipsometry. Others, particularly X-ray
and neutron reflectivity,57,58and the aforementioned FRES, are
less familiar. As with SANS, neutron reflectivity exploits the
scattering contrast between1H and 2H to probe composition
profiles normal to an interface, with spatial resolution below 1
nm. The wavevector dependence of the specular reflectance is
sensitive to gradients of scattering cross section, even of buried
interfaces, and for appropriate samples can provide a uniquely
detailed picture of molecular organization. As with scattering
methods in general, reflectivity suffers from the inversion
problem: the absence of phase information means that one can
never obtain a unique real-space transform from the data.
1.D. Brief Outline. For an article of this length, and a topic

of this breadth, a good deal of selectivity is necessary. We
have employed several criteria in this selection. First, we
highlight areas that are of great current interest and in which
substantial progress has been made in recent years. Some of
these are “classical” issues (e.g., excluded volume, chain
entanglement) which have been examined for over 50 years,
whereas others (e.g., polymer brushes, copolymer phase dia-
grams) are of more recent vintage. Second, we emphasize
phenomena which illustrate the concepts identified in section
1.B; some important problems which are not inherently poly-
meric (e.g., the glass transition) are omitted. Third, and most

important, we feature problem areas in which the interplay of
theory and experiment has proven to be particularly fruitful.
Necessarily there is a great deal of personal taste, some might

say arbitrariness, to the selection. Certainly there are serious
omissions, both in topical coverage and in thorough referencing.
For example, liquid crystalline polymers, polymer crystallization,
polymers with interesting electrical and optical properties,
polymer gels, and networks are all neglected. In the interests
of clarity and simplicity, there are many issues for which the
discussion is overly simplified. For all these sins and more,
we can only apologize in advance.
In the next section, we consider the equilibrium and dynamic

properties of isolated chains and then proceed to concentrated
solutions, melts, and mixtures in section 3. In section 4
interfacial polymer systems are considered: polymer brushes,
block copolymers, and micelles. We conclude with a brief
summary and a discussion of possible future directions.

2. Dilute Solutions

2.A. Equilibrium. The probability distribution function
G(RB,L) of the end-to-end vector RB of an isolated chain with
interactions can be expressed by the path integral13

where rb(s) is the position vector of thesth monomer in
d-dimensional space; d[rb] implies summation over all possible
paths between the ends of the chain rb(0) and rb(L), andV is the
potential interaction between thesth ands′th monomers. The
argument of the exponential is referred to as the Edwards
Hamiltonian; the first term, the “kinetic energy”, reflects the
chain conformation, while the second, the “potential energy”,
accounts for the energetics of monomer-monomer interactions.
Usually it suffices to assume thatV is short-ranged and is
represented by a pseudopotential of strengthw, V ) wδd[rb(s)
- rb(s′)], where δd is the d-dimensional delta function. The
excluded volume parameter,w, can be viewed as the angular-
averaged binary cluster integral for a pair of segments:5,7

Clearlyw depends onT and on the (nonuniversal) specifics of
the polymer and solvent. It is possible to define a special
temperature,Θ, in the vicinity of which

This Flory theta temperature2 is somewhat analogous to the
Boyle point of the van der Waals gas, in that it represents the
temperature at which excluded volume repulsions and monomer-
monomer attractions cancel, and the osmotic second virial
coefficient vanishes. It is also the critical temperature for
liquid-liquid phase separation in the infiniteN limit. Conse-
quently, both “upper” (i.e., UCST) and “lower” (i.e., LCST)
theta temperatures are possible, although the former is much
more common. AtT ) Θ, w ) 0 andG(RB,L) reduces to a
Gaussian distribution. For this case, the mean-square segment-
to-segment distance between segmentsi and j is proportional
to |i - j|, so thatRg ∼ N1/2.59

If w > 0, monomer-monomer interactions are effectively
repulsive, and the chain expands. Dimensional analysis of the
Edwards Hamiltonian shows that the free energy is of the form6

G(RB,L) )∫rb(0)rb(L)
d[ rb] exp{- d

2b∫0Lds (∂ rb∂s)
2

-

1
2∫0Lds∫0Lds′ V[ rb(s) - rb(s′)]} (2.1)

wb2 ) 〈∫d[ rb(s) - rb(s′)]{1- exp(-V)}〉 (2.2)

w∼ (T- Θ)/T (2.3)
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with the first term reflecting the conformational entropy and
the second the interactions. Since in the absence of excluded
volume effectsRg∼ L1/2, the appropriate dimensionless coupling
constant isz ) wL(4-d)/2.5,8 Therefore,Rg may be written as
L1/2R(z), where the expansion factor,R(z), needs to be deter-
mined. By minimizingF with respect toRg, one obtainsRg ∼
Lν, with ν ) 3/(d + 2). More rigorous derivation shows this
exponent to be correct, in the asymptotic limit ofzf ∞, except
for d ) 3, whereν ≈ 0.588, not3/5.8,60,61 The crossover
formulas forRg have been derived for arbitrary values ofz
between 0 and∞,8,11,60-62 in agreement with many experimental
data.63

ForTe Θ the chain shrinks and eventually undergoes a coil-
to-globule transition.8,64-66 It is now necessary to include three-
body potential interactions in the Edwards Hamiltonian, where
V is the new parameter:

The free energy can be written (d ) 3)

For asymptotically large|z|, R is inversely proportional to|z|.
Thus, a plot ofR|1 - Θ/T|xM versus|1 - Θ/T|xM should
be linear asTf Θ and constant forT/Θ . 1, as illustrated for
polystyrene/cyclohexane in Figure 6.67,68

The stiffness of the polymer backbone may be addressed by
calculating explicitly the torsional energies associated with
rotations about C-C bonds as functions of torsional angle and
by calculating how far chain orientation persists along the chain
contour. The rotational isomeric state model,3,4 which is
equivalent to a one-dimensional Ising model, permits exact
calculations in the absence of any long-range correlations along
the backbone. The key result, that the molecule is rod-like if
the chain is sufficiently stiff, is physically apparent. Effective
size exponents,νeff, can be ascribed to semiflexible chains in
dilute solutions. As the temperature is lowered,νeff changes
continuously from about3/5 to 1. Instead of possessing uniform
curvature along the chain contour, there are several polymers
where many rod-like regions, interspaced by coil-like regions,
are formed. The formation of rod-like regions is a cooperative
phenomenon and can appear as an abrupt change from a coil to
a “helix” or rod configuration as the temperature is lowered;
this is referred to as the helix-coil transition, although it is not
a true phase transition.69

Chain stiffness can also arise from charged monomers. The
size of a polyelectrolyte chain in solution has been studied
extensively, but the experiments are difficult and not yet
definitive, as recently reviewed.70 If the charge density on the
polyelectrolyte chain is sufficiently high and the electrostatic
interaction is unscreened, the chain is rod-like. Questions about
the electrostatic persistence length induced by the presence of
charges on the chain,71 the extent of counterion condensation
on the polyelectrolyte,72 and the structure factor are abundant

in the literature.70 To date, there is no completely satisfactory
theory of polyelectrolytes. The theoretical description becomes
ill-defined if the chain contains oppositely charged monomers
or groups capable of undergoing specific interactions with each
other. The origin of the difficulty lies in the entropic frustrations
and accompanying issues of ergodicity. Such heteropolymers
with prescribed sequences are excellent model systems to
understand the more complex behavior of natural polymers like
proteins and polynucleotides.
Many syntheses of linear polymers introduce chain branching

as defects. In addition, certain branched polymers possess
specific technological advantages over linear chains. Conse-
quently, extensive research has been carried out in characterizing
various branched polymers73 such as stars, combs, randomly
branched polymers, and dendrimers. For example, the ratio of
the radius of a branched polymer to that of a linear polymer of
the same totalN is a function of the branching architecture.
For a star polymer withf arms emanating from the center,

in the absence of excluded volume effects.74 Explicit expres-
sions for other molecular architectures and the role of excluded
volume are known.5 In particular, the determination of the
monomer density profile within a dendrimer has been of
excitement,75-79 due to the potential application of these
molecules as uniquely functionalized, nanoscale closed inter-
faces.
2.B. Dynamics. The linear viscoelastic properties of

isolated, flexible homopolymer chains are now almost quanti-
tatively understood, at least for low to moderate frequencies,
ω. The most successful framework for describing the dynamic
shear modulus,G*(ω), is the bead-spring model (BSM) of

F
kT
∼ Rg

2

L
+ wL2

Rg
d

(2.4)

G(RB,L) )∫rb(0)rb(L)
d[ rb] exp{- d

2b∫0Lds (∂ rb∂s)
2

-

w
2∫0Lds∫0Lds′ δd[ rb(s) - rb(s′)] -

V
2∫0Lds∫0Lds′∫0Lds′′ δd[ rb(s) - rb(s′)][ rb(s′) - rb(s′′)]} (2.5)

F
kT
∼ Rg

2

L
+ wL2

Rg
3

+ VL3

Rg
6

(2.6)

Figure 6. Coil-to-globule transition for polystyrene in cyclohexane;
Rh and Rη denote the expansion factors obtained by dynamic light
scattering and intrinsic viscosity, respectively, andτ ) 1 - Θ/T.67,68

The different symbols reflect measurements on different molecular
weight samples. Reproduced with permission from refs 67 and 68.

Rg
2(f)

Rg
2(linear)

) 3f - 2

f 2
(2.7)
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Rouse and Zimm,80,81wherein the chain is modeled as a series
of N+ 1 beads connected byNHookean springs, embedded in
a continuum of viscosityηs.7,82 The springs represent the
entropic restoring force that resists chain extension or compres-
sion, while the beads provide friction with the solvent. The
coupled equations of motion for the beads, in the (assumed)
overdamped limit, relate the hydrodynamic, spring, and Brown-
ian forces. Transformation to normal coordinates yields a series
of N normal modes with associated relaxation times,τp. The
longest relaxation time,τ1, reflects the correlation time for
fluctuations of the end-to-end vector (in both magnitude and
orientation), whereas the progressively shorter relaxation times
reflect motion of correspondingly smaller pieces of the chain.
The dynamic shear modulus may be written

The Zimm model differs from the Rouse treatment in its
incorporation of intramolecular hydrodynamic interaction, in the
preaveraged Kirkwood-Riseman approximation.83 Physically,
this corresponds to the through-space interaction between remote
beads, which induces an additional cooperativity to the chain
motion, as illustrated in Figure 7. Only the first “Oseen” or
1/r term is retained, and the preaveraging removes the depend-
ence on the instantaneous positions of all the beads. For dilute
solutions of flexible chains, incorporation of hydrodynamic
interaction is essential for even qualitative agreement with
experiment. The Rouse model is analytically soluble, however,
whereas the Zimmmodel may only be solved numerically; exact
eigenvalue routines are available.84 Extensions to branched,
cyclic, and copolymer chains have also been developed.85-87

A major limitation to the BSM is the omission of excluded
volume forces. Consequently, it is most applicable toT ≈ Θ.
However, excluded volume interactions have been incorporated
approximately, via the bead distribution function employed in
preaveraging the hydrodynamic interaction. Several approaches,
including the renormalization group, have been shown to give
almost indistinguishably successful fits to infinite dilution
data.87-89 However, one particularly appealing approximation
is dynamic scaling, which asserts that, due to the self-similar
nature of the chain conformation, all the relaxation times are
related to the first throughτp∼ τ1p-3ν, whereτ1∼ Rg3∼ M3ν.7

From eq 2.8, one obtains the limiting behavior forωτ1 . 1
(but ωτseg, 1):

The success of this approach is illustrated in Figure 8.89

The BSM is inadequate at high frequencies (ωτsege 1), where
details of the chemical structure intervene, and at higher rates
of strain, where chain extensions become substantial. In the

former, the assumption of the solvent as a continuum breaks
down. Interesting manifestations of this include polymer-
induced modification of the relaxation characteristics of the
solvent,90 negative intrinsic viscosities,90 non-Kramers scaling
of segmental motion withηs (e.g., τseg∼ ηsR with R < 1),91

spatial heterogeneity in the solvent mobility,92 and apparent
failures of time-temperature superposition.93 Quantitative
treatments of these phenomena remain elusive. At high strain
rates the ubiquitous phenomenon of shear thinning, in which
the steady-shear viscosity decreases with shear rate, is not
captured by the simple BSM.82 However, various enhancements
(nonpreaveraged hydrodynamic interaction, nonlinear springs,
etc.) show promise in this regard.82

A full treatment of chain dynamics requires description not
only of G*(ω) but also of the dynamic structure factor,S(q,t):

This has been addressed via linear response theory.54,94 Concur-
rently, extensive experimental results have become available,
primarily through dynamic light scattering.95 In essence,S(q,t)
monitors the spontaneous creation and relaxation of concentra-
tion fluctuations with wavelength 2π/q. Three limiting regimes
may be defined. ForqRg , 1, these fluctuations require
molecular translation to relax, andS(q,t) ) S(q,0) exp[-q2Dt]
for a monodisperse polymer, whereD is the diffusion coefficient.
In the Kirkwood-Riseman treatment, extended to non-theta
solutions,

i.e., it follows the Stokes-Einstein equation with the hydro-
dynamic radius,Rh, appropriately defined (Rh ∼ Rg). For qb
≈ 1, the length scale of fluctuations corresponds to motion on
the monomer scale. These may also be diffusive at short times
but become subdiffusive when the chain connectivity is felt.
This crossover has been accessed by neutron spin-echo spec-

Figure 7. Illustration of hydrodynamic interaction: the motion of
segmenti perturbs the fluid velocity at all other segmentsj.

G*(ω) )
cRT

M
∑
p)1

N ωτp

1+ iωτp
(2.8)

G′ ∼ (ωτ1)
1/3ν π

6υ
1

sin(π/6ν)
; G′′ ∼ (ωτ1)

1/3ν π
6υ

1
cos(π/6ν)

(2.9)

Figure 8. Infinite dilution shear moduli for polybutadienes in dioctyl
phthalate, showing the success of dynamic scaling: the slopes, vertical
separation, and absolute location of the curves are fixed for one value
of ν ) 0.538. The data were acquired by oscillatory flow birefringence,
and were converted toG′ andG′′ via the stress-optical relation; f is
the frequency in hertz,M is the molecular weight,C is the stress-
optic coefficient, andS′ andS′′ are the viscous and elastic components
of the dynamic birefringence, respectively. Reproduced with permission
from ref 89.
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1

N2
∑
j

N

∑
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〈âjâk* exp(-iqb‚[ rbj(t) - rbk(0)])〉 (2.10)

D ) kT/6πηsRh (2.11)
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troscopy.96 The intermediate regime, withqRg > 1 andqb <
1, follows the internal modes of the chain. Here the Zimm
theory predicts thatS(q,t) is a function oft1/3ν, which has been
confirmed experimentally.97 (Note the correspondence between
this exponent and that forG*(ω) whenωτ1 . 1.) The first
cumulant ofS(q,t),Ω(q) (≡-limtf0(1/S(q))(∂S(q,t)/∂t)), displays
a characteristicq3 scaling, which may be understood quite
simply. For internal modes, one expectsΩ to be independent
of M and a function ofqRg alone. The self-similarity of the
chain implies that this be a homogeneous scaling function,f(x),
which reduces to unity asqRg f 0. Consequently,Ω )
q2Df(qRg), and molecular weight independence imposesf(x) ∼
x. (Note that the Rouse theory, with no hydrodynamic interac-
tions, givesf(x) ∼ x2 andΩ ∼ q4.) Linear response theory
calculations of the ratioΩ/q3 are found to be systematically in
error by 10-15%, for reasons that are not fully apparent.98

The dynamics of polyelectrolyte solutions are considerably
more complicated than those of homopolymers and not yet well
understood; this is not surprising, given the recalcitrant dif-
ficulties in describing even the equilibrium properties. As an
example, dynamic light scattering studies show that decreasing
the salt concentration in solutions causesS(q,t) to suddenly split
into two modes, as illustrated in Figure 9.99 This “ordinary-
extraordinary transition” occurs at some critical salt concentra-
tion or at some polyelectrolyte concentration if the salt
concentration is kept low.100,101 This phenomenon is apparently
universal and is observed in diverse polyelectrolyte systems
including biopolymers. The faster mode is attributable to strong
coupling between counterion and polyion motions.99,102 The
slower mode, however, remains rather mysterious, as it implies
the existence of large domains or chain aggregates; these may
be related to the observations that underlie speculation about
long-range attractive forces in polyelectrolyte and colloidal
solutions.103

3. Concentrated Solutions and Melts of Homopolymers

3.A. Homogeneous State: Chain Conformation.Consider
a melt of flexible polymer chains. Although it might appear
that many-body interactions would make this a much more
complicated problem than dilute solutions, it is not so. Two
great simplifications arise. First, in the melt chains adopt
Gaussian conformations; according to the “Flory theorem”, the
intrachain excluded volume interactions are completely screened.2,6

Second, intramolecular hydrodynamic interactions are absent.
Consequently, the Rouse description of chain dynamics becomes
an excellent approximation, but only for short chains. A new
phenomenon arises in the dynamics, however: chain entangle-
ment.104 The mutual uncrossability of long chains exerts a
dramatic influence on the viscoelastic and diffusional properties
of the molecules.
The screening of excluded volume interactions can be

understood conceptually as follows. For a single chain in an
athermal solvent, hard-core repulsive interactions between
monomers cause the chain to swell beyond the random walk
dimensions. In the melt, although the surroundings remain
athermal, all monomers are indistinguishable. Thus, one
monomer cannot tell whether a spatial nearest neighbor belongs
to the same chain or not. Thus, swelling of the chain will not
decrease the number of monomer-monomer contacts, and
Gaussian statistics prevail. Although Flory first predicted this
almost 50 years ago,105 it was only the advent of SANS in the
early 1970s that permitted testing of this proposition;106 it has
now been firmly established for many polymer systems.107

Furthermore, the form factor of a single chain (forqb < 1) is
given simply by the Debye function (the Fourier transform of
the Gaussian distribution):

which plays a central role in the random phase approximation
(RPA) formulation ofS(q) for polymer mixtures.6 However,
the conformation of a single chain in a melt of chains of varying
molecular weights, or in miscible blends, has not been system-
atically explored.
For a polymer in a good solvent, excluded volume interactions

become progressively screened as concentration increases. The
coil overlap concentration,c*, denotes the crossover between
the dilute and semidilute regimes and may be estimated as

Thus, coil overlap begins when the global polymer concentration
equals the local average concentration within a single coil. In a
semidilute solution, the interpenetrating chains may be consid-
ered to form a transient network, with a correlation length, or
mesh size,ê, as shown in Figure 10. On length scales shorter
thanê, excluded volume interactions are still felt, whereas for
longer length scales the chains become indistinguishable. The
concentration dependence ofê may be obtained by a simple
scaling analysis, assuming (a)ê is independent ofM, (b) ê )
Rg when c ) c*, and (c) ê(c) ) Rgf(c/c*), where f is a
homogeneous function. The result isê ∼ cν/(1-3ν). A sequence
of monomers,g, corresponding toê is termed a “blob”.108 The
polymer is viewed as a chain of blobs, with

Figure 9. Fast and slow diffusion modes for a high molecular weight
polystyrene sulfonate (Mw ) 1.2× 106) in deionized water, measured
by dynamic light scattering at a scattering angle of 90°. Reproduced
with permission from ref 99. Copyright 1992 American Institute of
Physics.

Figure 10. Illustration of the concept of a “blob”, or correlation length,
ê, in a semidilute polymer solution.

P(q) ) 2N

q4Rg
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(exp[-q2Rg

2] + q2Rg
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c* ≈ 3M/4πNavRg
3 (3.2)
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which leads to the prediction thatRg decreases asc-1/8 in the
good solvent semidilute regime. Some initial experiments were
roughly consistent with this,109 whereas others were not;110

however, advances in both SANS and synthetic techniques
suggest that this issue should be reexamined.
3.B. Homogeneous State: Chain Dynamics.The phe-

nomenon of chain entanglement remains the central issue in
polymer dynamics, although the past 20 years has seen a great
deal of progress.7,104,111 It is helpful to review the experimental
manifestations of entanglement before considering possible
molecular interpretations. Consider the time dependence of the
stress relaxation modulus,G(t) ) σ(τ)/γ, after imposition of a
step strain of magnitudeγ at t ) 0; a typical result for a high
M melt is shown in Figure 11.112 At very short times the
magnitude ofG is characteristic of a glass, and then relaxation
occurs. This may be attributed to motion on the segmental level,
i.e., 1-50 monomers. However, at anM-independent charac-
teristic time,τe, the relaxation virtually ceases, andG(t) exhibits
a plateau. Eventually, the relaxation resumes, andG(t) decays
to zero, as it must for a liquid. The “terminal” relaxation time,
τ1, associated with this flow regime, may be seconds or hours
and depends strongly onM. The plateau region (τe < t < τ1)
may span several decades of time; its duration is a strong
function ofM. This feature is reminiscent of a cross-linked
rubber, and indeed the (M-independent) magnitude ofG(t) in
the plateau, designatedGN, is comparable to that for lightly
cross-linked rubbers.104 The standard interpretation is that the
chains exhibit temporary cross-links, or entanglements, that
inhibit long-range motion. Eventually, the chains must escape
these constraints, and the liquid flows. Borrowing a formula
from rubber elasticity,113 G ≈ FRT/Mx, whereMx is theM
between cross-links, one can define an apparentM between
entanglements,Me, asFRT/GN. Typically,Me corresponds to
150-200 monomers. Other commonly invoked manifestations
of entanglement are a plateau inG′(ω) (the cosine Fourier
transform ofG(t)), a strong increase in theM dependence ofη,
at a characteristicMc≈ 2Me (η ∼ M for M < Mc andη ∼ M3.4

for M > Mc), and the large scale elastic recovery of deformed
polymer liquids.
A fundamental understanding of the entanglement phenom-

enon remains elusive. Although clearly intimately related to
chain uncrossability, that is not sufficient;n-alkanes may not
pass through one another, yet they do not entangle in this sense.
The entanglement spacing does correlate well with the amount
of chain contour per unit volume, and furthermore, the onset
of entanglements (i.e.,M ) Me) corresponds roughly to the point
at which the spherical volume pervaded by a test chain is also
occupied by one other chain.114,115

The reptation model provides an appealingly simple picture
of entangled chain motion7,116 and makes predictions that are,
in the main, in good agreement with experiment.111 The
entanglements are viewed as a quasi-permanent network, with
a mesh size,d ∼ Me

1/2. Although local motions are isotropic,
a chain can only escape the entanglements by diffusing along
its own contour, like a snake, as illustrated in Figure 12. In
the reptation time,τrep, the center of mass travels a root-mean-
square curvilinear length,L, equal to (M/Me)d. The friction
experienced during this quasi-one-dimensional diffusion is
assumed to be Rouse-like,i.e., proportional toM. Thus,τrep∼
L2(M/kT) ∼ M3. During the same time interval, the center of
mass moves in three dimensions an rms distance of orderRg,
so that the diffusivity,D, scales asRg2/τrep∼ M-2. Prior to the
reptation idea, there had been very few studies of chain

diffusion. In recent years, however, an extensive body of data
has been acquired, in general agreement with this prediction.111

The rheological properties of polymer melts may also be
predicted on the basis of reptation,7 in partial agreement with
experiment; a few discrepancies do remain. For example, theory
predictsη ∼ τrep ∼ M3, whereas the exponent 3.4( 0.2 is
universally observed.104,117 Also, the exact shape ofG′(ω) and
G′′(ω) in the terminal region is not well-captured by reptation,
which is almost a single relaxation time process. One possible
explanation is the presence of additional lateral degrees of
freedom, due to the transient nature of the entanglements, that
are not incorporated in the simple reptation picture.118,119

The reptation process on time scales shorter thanτrepcan also
be explored.7 Consider the mean-square displacement of an
arbitrary monomer,g(t) ≡ 〈[r2(t) - r2(0)]〉. For very short
times, a monomer is unaware of its connectivity, sog(t) ∼ t.
However, very soon it becomes aware of its bonded neighbors,
andg(t) ∼ t1/2. This subdiffusive behavior is characteristic of
a random walk of defects along the chain, which is a random

Rg
2∼ (N/g)ê2 (3.3)

Figure 11. Relaxation modulus (obtained in extension, not shear) for
high molecular weight polyisobutylene; original data of Tobolsky and
Catsiff.112The data obtained at several temperatures have been reduced
to one master curve by time-temperature superposition.

Figure 12. Replacement of a chain surrounded by entanglements by
a snake in a tube, following Doi and Edwards;7 the original tube is
slowly “destroyed” as the chain escapes through the ends.
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walk itself. The scaling ofr with t1/4 is the exact analog of the
Ω ∼ q4 scaling for the internal modes of an isolated Rouse
chain, mentioned in section 2. For an unentangled chain,g(t)
returns to Fickian behavior when the displacement exceedsRg,
as now all monomers move in concert with the center of mass.
However, for a reptating chain, two new, subdiffusive regimes
intervene, as shown in Figure 13. First, when the displacement
is of orderd (at timeτe), the entanglement constraints further
retard the spatial excursion of the chain, andg(t) ∼ t1/4. Then,
on a time scale sufficient to allow defects to propagate along
the chain length,g(t) becomes Rouse-like again and scales as
t1/2. These various scaling laws have been energetically pursued,
by both experiment120,121 and simulation.44,122 The results
remain somewhat controversial, but the existence of an inter-
mediate dynamic length scale,d, corresponding exactly to that
associated withMe from rheology, has been firmly established
by neutron spin-echo measurements, and the character of the
slowing down of g(t) is in good agreement with reptation
predictions.121

The dynamics of branched polymers of controlled architecture
has also shed considerable light on the reptation model. For
example, a three-armed star polymer cannot be expected to
reptate.118,123-125 If the arms are sufficiently entangled, the
principal mode of relaxation is for the free end of arm to retract
through the entanglements, as shown in Figure 14. This requires
a random walk to retrace itself, which is exponentially un-
likely: τarm ∼ exp(-Marm/Me). Considerable experimental
evidence for this scaling has been accumulated, in both diffusion
and viscosity.111

An extensive critical comparison of reptation predictions with
experiment has been given,111 and as mentioned above, the
results are on the whole extremely good. Why, then, is the
reptation picture still controversial? There are several difficul-
ties. First, the reptation model is that of a single chain in a
mean field, and it is doubtful how well this can capture what is
so inherently a many-chain effect. Second, the reptation model
says nothing about what entanglements are; it assumes their
existence as a first step. Third, it is a hypothesis for the
predominant chain motion, rather than the result of a micro-
scopic theory. There has emerged no microscopic basis for
reptation. Rather, it has been shown that a variety of other

physical pictures can lead to comparable phenomenology.126-129

In particular, the mode-coupling approach has been able to
capture most of the same predictions, without any preference
for longitudinal chain motion.128 It is possible, therefore, that
the observed scaling laws are more a consequence of long-range
spatial correlations in the dynamics than of any particular mode
of motion. This area is likely to remain fruitful, at least on the
theoretical side; experimentally, one could argue that sufficient
data exist to test any model thoroughly. The key for any new
model is to make testable predictions that are qualitatively
different from reptation.
Chain dynamics in nondilute solutions are more complicated

than in either dilute solutions or melts. The reasons for this
are several. First, there is a progressive screening of intramo-
lecular hydrodynamic interactions as concentration increases,
resulting in a broad crossover from Zimm-like to Rouse-like
behavior in the vicinity of, or above,c*. Second, at a
concentration,ce, that usually falls between 2c* and 10c*, the
onset of entanglement effects becomes apparent for high
molecular weight chains. Third, the progressive screening of
excluded volume interactions leads to a gradual contraction of
average chain dimensions. Fourth, the concentration scaling
laws that work rather well for static properties such asê do not
hold as well for the dynamic screening length. Fifth, the local
friction coefficient,ú (∼τseg), is an increasingly strong function
of concentration, particularly for polymers such as polystyrene
with a glass transition well above room temperature. Conse-
quently, interpretation of data in this regime remains contro-
versial; for example, the same results have been advanced as
evidence both for and against the onset of reptative motion.111

3.C. Phase Behavior.A standard method of making new
materials is blending. In general, polymers do not mix well,
for reasons discussed below. The continuing demand for new
materials has forced a deeper examination of the factors which
control polymer miscibility. Most of the essentials are contained
in the simplest theory of polymer thermodynamics, due to Flory
and Huggins.2,130 Consider a blend ofn1 chains of type 1 each
with N1 segments andn2 chains of type 2 each withN2 segments.
Let ε11, ε22, and ε12 be the energies of interaction associated
with 1-1, 2-2, and 1-2 contacts. Assuming random mixing,
which (incorrectly) disregards any topological correlation as-
sociated with chain connectivity, the free energy of mixing per
unit volume is

where the volume fraction of componenti is φi ) niNi/(n1N1 +
n2N2) and ø ) (z/2kT)[2ε12 - ε11 - ε22], with z being the
effective coordination number. At this level of approximation,
the (nonuniversal)ø ∼ T-1.
The Flory-Huggins theory is exactly equivalent to regular

solution theory and the Williams-Bragg theory of metal
alloys.131 Standard thermodynamic analysis132 locates the
critical point

with critical exponents that are mean-field-like. The entropy
of mixing for polymers scales asN-1 and is consequently very
small; thus, even small heats of mixing are sufficient to render
polymer pairs immiscible. The scaling ofTc with N-1 has only
recently been confirmed experimentally.133 ForT < Tc, i.e., ø
> øc, there is a range of compositions where the system is

Figure 13. Time evolution of displacement for an arbitrary monomer
on a reptating chain.7

Figure 14. Diffusion of entangled three-arm star polymer by the arm-
retraction mechanism, as illustrated by Klein. Reproduced with permis-
sion from ref 125.
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thermodynamically either unstable or metastable. The coexist-
ence curve (binodal) depicting the compositions of coexisting
phases at different temperatures is obtained by the thermody-
namic stipulation that the chemical potential of every component
is the same in all coexisting phases. The spinodal curve, which
separates the region of thermodynamic instability from this
region of metastability, is obtained by

The resulting UCST phase diagram is illustrated in Figure 15.
Defining an order parameterψ ) φ1 - φ1c, the Flory-

Huggins free energy, upon Taylor series expansion inψ, leads
to the Landau expansion

whereF0 is a constant. AsTf Tc, Af 0, so thatF is sensitive
to ψ only through the quartic term. This indicates that there is
an increase in fluctuations inψ as T f Tc, i.e., local
inhomogeneities are created spontaneously. This expansion can
be generalized to the inhomogeneous case by the Landau-
Ginzburg free energy

whereψ(rb) is now position-dependent. The square-gradient
Ginzburg or Cahn-Hilliard term134 depicts the free energy
penalty associated with the creation of interfaces.
The coefficientκ dictates the interfacial tension,Γ, and the

interfacial width,λ, between the two coexisting phases:

For polymer blends, creation of interfaces at length scales shorter
thanRg requires conformational distortion of the chains. Such
entropic contributions toκ dominate the usual enthalpic terms
arising from potential interactions between segments; the latter
are the only factor for small molecules. Using a mean-field
theory for such entropic fluctuations, called the random phase
approximation (Viz., the collective density modes are de-
coupled),6 the (N-independent)κ becomes

The change in free energy to excite a fluctuation,∆ψ ) ψ
- ψ0, whereψ0 is the equilibrium value, is

Therefore, the static structure factor,S(q), which is the Fourier
transform of the mean-square fluctuations, follows the Orn-
stein-Zernicke form

where the correlation lengthê ) x(κ/A). The scattered
intensity I(q) (∼S(q)) as a function ofφ andT determinesA
andê. As T f Ts, I(0) andê diverge as|T - Ts|-γ and |T -
Ts|-ν, respectively, where the mean-field exponents areγ ) 1
andν ) 1/2.
Critical phenomena of polymer blends fall in the same

universality class as the d) 3 Ising spin system, whereγ )
1.26 andν ) 0.63, as shown by voluminous experimental data
on different small molecular mixtures, spin systems, and
renormalization group calculations.135 Therefore, these Ising
values should be observed for polymer blends nearTc. How-
ever, polymer blends are expected to be more mean-field-like,
for the following reason. The mixing entropy is∼N-1 and the
enthalpy is∼ø; therefore, the key experimental variable isøN.
This is equivalent to the statement that the coordination number
is zN, which is very large; thus, mean-field theory is more
applicable. A Ginzburg criterion for polymer blends can be
constructed to find the experimental range of applicability of
mean-field theory.136 Yet, as one approachesTc closely enough,
there is a crossover between mean-field to Ising behavior, as
shown in Figure 16.137-139

Equation 3.4 fails to provide a quantitative description of real
polymer mixtures. This is not particularly surprising, given its
underlying simplicity. It is common practice to use eq 3.4 or
3.6 withø as a fitting function;ø thus defined incorporates the
excess thermodynamic functions and often depends onN and
φ. Furthermore,ø always exhibits a temperature-independent
“entropic” component that is often dominant. This term is
present even for isotopic blends.140 A full molecular theory

Figure 15. Phase diagram for a symmetric polymer blend (N1 ) N2),
according to the Flory-Huggins theory.
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Figure 16. Mean-field to Ising-like crossover in the inverse intensity
for a polyisoprene-poly(ethylenepropylene) blend. Reproduced with
permission from ref 137. Copyright 1990 American Institute of Physics.
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for this ø function would be extremely useful, but probably
unwieldy. Given that (øN)c≈ 2, forN) 103 one would require
accuracy inø to the fifth decimal place,i.e., knowledge of the
interactions at the level of 10-5kT. It is also the case that most
miscible blends exhibit a negativeø; i.e., specific interactions
drive mixing. These systems usually display LCST behavior
(demixing upon heating) due to compressibility effects. Equa-
tion-of-state141,142 or lattice fluid theories134,143,144can often
account for these features, but not necessarily in a transparent
way.
If a blend is taken inside the binodal, it will phase separate

to give two coexisting phases with compositions given by the
coexistence curve at that temperature. Although the final
thermodynamic state is the same, the mechanism by which the
final state is approached depends on whether the system is
initially quenched to an unstable or a metastable state. In the
former case, the phase separation is spontaneous, and the
mechanism is termed spinodal decomposition. Starting from a
metastable state results in nucleation and growth. These two
processes are illustrated schematically in Figure 17.145

In spinodal decomposition, the time evolution of composition
is obtained from the continuity equation11,146

where JB is the flux, given by

with ∇µ being the chemical potential gradient at rb; Λ, the
Onsager coefficient, is the mobility. In general,Λ is nonlocal
in view of the appreciable physical size of polymer molecules;
it is a function ofN1, N2, φ, and the self diffusion coefficients.
The chemical potential is obtained from eq 3.4 or 3.8.
Therefore, eq 3.13 is highly nonlinear and is solved numerically.
In the early stages, a linear stability analysis can be per-
formed.11,146 Using eq 3.11, eq 3.13 gives, for early times,

whereA< 0 in the spinodal region. Therefore, the fluctuations
andS(q,t) depend on time exponentially,

so that large wavelength fluctuations withq e qc ) x|A|/κ
grow with time, while small wavelength fluctuations, withqg
qc, decay. This spontaneous selection of large wavelength
fluctuations establishes sufficient gradients for nonlinear effects
to dominate. Due to the smallness ofΛ andqc, polymer blends

are excellent experimental systems to investigate the early stage
of spinodal decomposition.144,147,148 In the intermediate stages
of spinodal decomposition, the average domain size,R, increases
ast1/3, by either the Lifshitz-Slyozov evaporation-condensation
or the coalescence mechanisms. In the late stages, hydrody-
namic effects dominate, andR∼ t.
Systematic experiments on nucleation and growth in polymer

blends have only recently begun.149,150 The theoretical descrip-
tion of this process considers the competition between the free
energy gain associated with formation of a droplet of the
equilibrium phase and the free energy loss accompanying the
creation of the droplet surface, as with small molecules.
Droplets with a larger than critical radius grow, whereas smaller
droplets redissolve. If critical droplets are formed by thermal
fluctuations in the metastable state, the process is termed
homogeneous nucleation. If the surface for growth is provided
by impurities such as dust particles or residual catalyst, then
the process is called heterogeneous nucleation; this is always
dominant in practical situations. The late stage of nucleation
and growth is presumed to be similar to that of spinodal
decomposition. The droplet model of nucleation can also be
used in understanding crystallization of polymers from liquid
phases. In this case, the morphology of crystalline polymers is
extremely rich and is very different from spherical droplets.151

4. Interfaces and Tethered Chains

4.A. General Features.A surface or interface imposes both
entropic and energetic constraints, the effects of which can
persist tens of nanometers into a bulk phase. For example, a
hard surface removes conformational degrees of freedom for
any flexible chain whose center of mass is withinca. Rg of the
wall. This can lead to a polymer depletion zone for solutions
near the walls of pores and favors migration of shorter polymers
to the free surface of a melt. In the stiff chain limit, a hard
surface can induce liquid crystalline order. From an energetic
perspective, polymers with lower surface energies,Γ, will
preferentially segregate to the surface. Thus, in a miscible
polymer blend, the surface will be enriched in one component,
at the cost of mixing entropy. The result is a composition profile
that decays to the bulk average over length scales of orderRg.
Functional groups on polymers, or simply chain ends, can also
preferentially locate in the near surface region, with a myriad
of potential applications for tailoring the properties of material
surfaces. In many situations, polymers have one monomer
anchored to a surface or interface; these are termed “tethered
chains”.152

4.B. Polymer Brushes.A “brush” is a dense layer of chains
that are grafted to a surface or interface; “dense” in this context
means that the average distance between tethering points is much
less than the unperturbed dimensions of the chain.152 As a
consequence of this crowding, the chains stretch away from the
surface, incurring an entropic penalty. The balance between
osmotic and elastic contributions dictates the free energy,
composition profile, and spatial extent of the brush. Brushes
arise in a variety of interesting circumstances, including grafted
layers, colloidal stabilization, highly branched polymers, mi-
celles, and block copolymer microstructures.
Consider a planar surface (see Figure 18) to which are

anchored chains ofN segments, with a mean separation of
anchorsd , N1/2b; the areal density of chains,σ, is thusd-2.
(If N1/2b e d, the chains can ignore each other, in a situation
referred to as “mushrooms”.) In the simplest, mean-field limit,
the layer composition profile is assumed to be a step function
of heightL, with constant polymer volume fractionφ ) Nb3/
Ld2.153,154 The free energy may be estimated as a balance of

Figure 17. Schematic illustration of phase separation by nucleation
and growth and by spinodal decomposition.

∂φ( rb,t)∂t ) -∇‚JB (3.13)
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∆ψ(q,t) ) -Λq2(A+ κq2)∆ψ(q,t) + ... (3.15)

S(q,t) ∼ exp{-Λq2(A+ κq2)t} (3.16)

Physical Chemistry of Polymers J. Phys. Chem., Vol. 100, No. 31, 199613285



excluded volume and elastic forces (cf. eq 2.4):

where the first term penalizes monomer-monomer contacts and
the second distortion of the coil. Minimization with respect to
L gives

The interesting result is that the layer height scales linearly with
N, in contrast to the untethered equivalent, whereRg ∼ N3/5.
This mean-field treatment ofF suffers from some of the same
limitations as in solutions but nevertheless produces the correct
scaling ofL with N. This scaling persists in a theta solvent,
wherew) 0. The appropriateF reflects three-body interactions,
Fex ) Vφ3d2L/b3 (cf. eq 2.6), with the result

The treatment ofF may be improved with a blob approach, as
in section 3.A; however, the main difficulty is the assumption
of a uniform density profile. An SCF approach offers a means
to determineφ(z) more precisely. An appealing analogy was
drawn by Semenov:155 a weakly stretched or unstretched chain
follows a trajectory identical in form to that of a quantum
particle (i.e., a solution to the Schro¨dinger equation;cf. eq 1.2),
whereas in the limit of complete stretching, the chain follows a
“classical” trajectory (i.e., a solution to Newton’s law). Con-
sequently, for strongly stretched chains the SCF allows fluctua-
tions about this most probable trajectory. If one begins the
trajectory at the free end of each chain, no matter what the
conformation, the chain hasN “steps” to arrive at the surface
(z) 0), beginning with zero “velocity”. The field of surround-
ing monomers provides a potential, which must be an “equal
time”, or harmonic, potential. (A ball placed at random in a
harmonic well, with zero initial velocity, will first reach the
bottom at a time independent of initial position.) Thus, the
composition profile is parabolic:156,157

and it is a necessary condition that the chain end distribution
be nonvanishing throughout the brush. Note, however, thatL
∼ N as before. This profile has some experimental support, as
well as close agreement with computer simulation.152

These arguments have been extended to curved surfaces, such
as occur in micelles155 or highly branched polymers.158 Gener-
ally, stretching is reduced relative to the planar grafting surface,
as further from the interface there is more space to relieve

crowding. In the mean-field limit,R ∼ N3/4 for a cylindrical
grafting surface andR∼ N3/5 for a spherical object.
4.C. Block Copolymer Microstructures. Block copoly-

mers comprise two or more sequences of distinct units co-
valently linked together,e.g., ...AAAAAA-BBBBB... The
composition variable isfA ) NA/(NA + NB). The A/B
interactions drive the system to self-assemble into a variety of
morphologies, in a manner reminiscent of small molecule
surfactants. However, the length scales associated with such
structures are governed by the chain size and are typically in
the 10-100 nm range. Copolymers are of technological
importance, because the covalent linkage prevents macroscopic
phase separation; a stable material with both A-like and B-like
character can be produced, or copolymers can be used to
compatibilize polymer blends.159-164

For a given molecule and temperature, the central questions
are (a) what is the equilibrium morphology, (b) what is the
composition profile, and (c) how does the periodicity scale with
ø andN? Theoretical treatments of block copolymer micro-
structures were first developed for two limiting regimes,
designated “strong” and “weak” segregation, according to
whether the enthalpic terms dominate the free energy or not. In
strong segregation (øN > ca. 50),155,165,166 A/B contacts are
very expensive, and so the system seeks narrow interfacial
profiles and a low interfacial area per unit volume. Conse-
quently, one may assume a step function concentration profile,
and the preferred morphologies are lamellar (0.30< f < 0.50),
hexagonal (0.12< f < 0.30), and body-centered cubic (space
group Im3hm) (0 < f e 0.12) (see Figure 19). To locate
boundaries between morphologies, one must evaluate free
energies for a given set of postulated structures; the structure is
not a consequence of the calculation. More detailed SCF
calculations give precise locations of these boundaries, plus the
deviation from step-function interfaces.167 The approximate
dependence of the periodicity,L, on ø andN can be obtained
simply from an enthalpy/entropy balance, as before. The

Figure 18. Schematic illustration of a grafted layer or brush.
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Figure 19. Experimentally assigned morphologies for diblock copoly-
mers.171
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minimum interfacial area would have each junction point
confined to a thin surface, with the chains stretched out
completely to fill space and maintain bulk density; however,
this chain stretching is entropically prohibitive. The interfacial
energy per chain is (Γ)(area/chain)∼ ΓN/FL,whereas the
stretching entropy is taken, as usual, to be∼L2/Nb2. The net
result is therefore (using eq 3.9)

This stretching is much weaker than in a grafted layer, due to
the ability of the copolymers to adjust their “grafting” density.
All of these strong segregation results have good experimental
support, particularly from the pioneering work of Hashimoto
and co-workers.163,168

In weak segregation, one is concerned with the location of
the first appearance of a periodic structure at the order-disorder
transition (ODT). Leibler employed a (mean-field) Landau
expansion of the free energy to locate the ODT atøN ≈ 10.5
for f ) 0.5.169 In this analysis, it is assumed that the composition
profile is sinusoidal, with vanishing amplitude at the ODT for
f ) 0.5 and that the chains are unstretched (L ∼ N1/2b). The
free energies of different periodic structures are compared by
appropriate evaluation of the coefficients in the expansion. In
Leibler’s original paper, the transition was predicted to be into
the bcc phase at all asymmetric compositions (f * 0.5), which
is not the case experimentally. However, this difficulty can be
removed by including higher Fourier harmonics in the free
energy calculation for a given structure (i.e., lifting the assump-
tion of sinusoidal profiles)167 and/or by including fluctuation
effects.170 These fluctuations stabilize the disordered state and
allow direct, weakly first-order transitions into the lamellar and
hexagonal microphases, as has been observed experimentally.171

The detailed description of these fluctuations remains somewhat
controversial,170,172-174 but their origin is qualitatively easy to

understand. For a symmetric homopolymer blend (NA ) NB

) N, φA ) φB), the critical point occurs at (øN)c ) 2, whereas
if one links these two chains at their ends, the ODT does not
occur untilø(NA + NB) ≈ 10.5. There is thus a wide range of
temperature (4< ø(NA + NB) < 10.5) over which the two blocks
“feel” a desire to segregate. This may be accomplished on a
local scale by transient regions of nonuniform composition. The
periodicity of these fluctuations must scale approximately as
Rg and correspond to a peak inS(q) at q* ∼ 1/Rg. The
segregation is quite subtle, however; for example, it might be
accomplished by chain stretching (separation of the centers of
mass of the two blocks) with or without modification of the
Gaussian distribution within one block.
Early experimental work in this area centered on styrene-

diene copolymers, which typically were strongly segregated.163

The spherical, hexagonal, and lamellar phases were found and
examined in some detail. The interfacial thickness was
extracted, and the domain period scaled asN2/3.168 The
boundaries between morphologies along the composition axis
were also roughly in accordance with theory. One provocative
new structure was observed in a narrow composition window
between the hexagonal and lamellar phases.175 It was assigned
as the ordered bicontinuous double diamond (OBDD, space
groupPn3hm; see Figure 19) largely on the basis of electron
microscopy.176 It was not found to be the low-energy state in
free energy calculations, however.167,177 More recently, there
have been extensive examinations of a wider variety of chemical
structures, in both weak and intermediate segregation regimes,
with intriguing results.171 First, three new bicontinuous mor-
phologies appear between the hexagonal and lamellar struc-
tures: the “gyroid” (space groupIa3hd), hexagonally perforated
layers (“catenoid lamellae”), and hexagonally modulated layers,
as shown in Figure 19. All three experimental phase diagrams
shown in Figure 20 are asymmetric aboutf ) 0.5. In some

Figure 20. Phase diagrams for four different copolymer systems: (a) polyethylene-poly(ethylenepropylene), (b) poly(ethylenepropylene)-poly-
(ethylethylene) and polyethylene-poly(ethylethylene), and (c) polyisoprene-polystyrene. Reproduced with permission from ref 171. Copyright
1994 Royal Society of Chemistry.

L ∼ N2/3Γ1/3 ) N2/3ø1/6 (4.5)
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cases the asymmetry is such that theIa3hd phase appears only
on one side of the diagram. This asymmetry has been attributed,
in the main, to differences in chain conformation. For example,
consider polyethylene and poly(ethylethylene). In the former,
all carbon-carbon bonds lie along the backbone, whereas only
half do in the latter. For equal molecular weights, the PE chain
will be long and thin, with a largeRg, whereas the short, fat
PEE block will be more compact. Consequently, the PE-PEE
interface will be more likely to be concave toward the PEE
domains. This amounts to a nonlocal entropic contribution to
the free energy, which should also contribute in polymer
blends.178 The phase diagrams in Figure 20 also exhibit a
dependence onN alone, in addition to that on the productøN,
with the complexity increasing asN decreases. This is
consistent with the general trend in polymers toward more mean-
field behavior asN increases, so that fluctuation contributions
diminish in importance, and it may be attributed in part to the
packing difficulties associated with short segments in non-space-
filling morphologies such as cylindrical micelles. Small
molecule surfactants, for example, are well-known to exhibit a
much richer array of phases than those of high molecular weight
block copolymers.179

The dynamics of block copolymers may differ from their
homopolymer counterparts in three general ways: structure,
friction, and entanglement.164 The first is the the most interesting
and the most obvious: the interactions between A and B
monomers drive segregation and produce periodic structures.
In general, these structures can be expected to retard chain
mobility, as the free energy landscape becomes more featured,
leading to localization of chain junctions in interfacial regions.
Furthermore, lamellar and hexagonal microphases may induce
anisotropic motion. Strong rheological signatures of microphase
formation may also be expected and are observed.180-183 The
second issue is the effective monomeric friction coefficient,ú,
for a copolymer. As is well-known from homopolymers,ú is
strongly T-dependent and structure-specific (τseg ∼ úb2/kT).
However, once polymers are mixed, bothúA andúB will depend
on matrix composition, in a manner that is as yet little
understood. For copolymers, one has the complication of a
compositionally heterogeneous environment, such thatúA and
úB may be functions of position along the chain. Furthermore,
úA andúB may differ by orders of magnitude from expectation
based on an “ideal mixing” rule, so that, numerically this effect
can swamp all others; these issues remain largely unexplored.
The entanglement problem is not likely to be as important
numerically, but still raises interesting issues.184 What is the
appropriate length scale for entanglement of a block copolymer?
Is it possible for two blocks to have different entanglement
length scales in a homogeneous mixture? If a chain is reptating,
is it possible for the “tube” diameter to vary with position along
the chain? These issues also await detailed examination.
The rheological properties of block copolymer melts have

been examined in some detail.164 In the linear viscoelastic limit,
the frequency dependence ofG*(ω) in the low- and moderate-
frequency regime varies markedly with morphology. The low-
frequency regime, in whichG′ ∼ ω2 andG′′ ∼ ω for simple
liquids, exhibits interesting intermediate scalings, such asG′ ∼
G′′ ∼ ω1/2 for lamellae.185 In the disordered state, but near the
ODT, composition fluctuations can lead to a low frequency
shoulder in the terminal regime, particularly inG′.186 Cubic
phases tend to exhibit broad plateaus inG′, reminiscent of the
entanglement plateau in homopolymer melts, but here attribut-
able to the connectivity of at least one domain. In all cases the
temperature dependence ofG′ in the low-frequency regime is
an excellent diagnostic of the ODT or of order-order transitions

when they occur; a spectacular example is shown in Figure 21,
where a single copolymer exhibits five distinct ordered phases.187

Comprehensive theoretical treatments of these various features
of block copolymer viscoelasticity are lacking.164

Under large-amplitude strain, block copolymer microstruc-
tures can undergo alignment to generate “single-crystal”-like
macroscopic structure.188,189 Here also interesting features have
emerged. For example, lamellae can orient with the lamellar
normal along either the gradient (“parallel” orientation) or
vorticity (“perpendicular” orientation) axes, depending on the
choice of frequency, strain amplitude, and temperature relative
to the ODT.190-192 A full explanation of the phenomenology
is not yet available, but some possible factors can be identified.
The perpendicular orientation decouples the vorticity of the shear
from the interfaces, which can resist deformation quite strongly.
On the other hand, in systems with strong “viscoelastic contrast”,
i.e., the viscosities of the two constituents are greatly different,
the parallel orientation might be favored to distribute the
deformation primarily in the less viscous layer. Entanglements
and defect/grain boundary motion may also be implicated.164

4.D. Micelles. When a block copolymer is dispersed in a
low molecular weight solvent (S), the structure and dynamics
can be altered in profound ways. The principal new feature is
the solvent selectivity, that is, the difference betweenøAS and
øBS. If either is sufficiently large that the solvent does not
dissolve that block, large aggregates or micelles will form, even
at extremely low concentrations.193,194 Such structures are of
interest for a variety of reasons, including extraction, separation,
and drug delivery systems. Or, if the copolymer is a symmetric
triblock (ABA) and the solvent prefers the B units, the assembly
of the A units can result in a transient network or gel. In the
limit that øAS ) øBS, the solvent is said to be neutral. Here, the
solvent serves to disperse otherwise strongly segregated chains,
e.g., for processing advantages.
The critical micelle concentration (cmc), spatial extent, and

aggregation number of spherical micelles in a selective solvent
can be predicted, using a balance of terms similar to that
encountered in block copolymer melts and grafted layers.195,196

For a significantly asymmetric copolymer (e.g., fA . fB) well
above the cmc, two simple limits obtain.197 If the A block does
not dissolve, one anticipates a “crew-cut” micelle: the corona
block, B, is very short. Or, if B does not dissolve, a star-like
or “hairy” micelle with long corona chains results (see Figure
22). In the largeøAB limit there will be a sharp core-corona

Figure 21. Shear elastic modulus for a poly(ethylene oxide)-poly-
(ethylethylene) diblock copolymer as a function of temperature.187The
assigned morphologies are crystalline lamellar (Lc), amorphous lamellar
(L), modulated lamellar (ML), bicontinuous cubic (B), hexagonal (H),
and disordered (D).
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interface. The core radius is dictated by the aggregation number,
f, and the bulk density of that component (assuming no
solvation): Rcore ) b(fNcore)1/3. The energy of the interface
scales asRcore2/f, the surface area per chain. Both core and
corona blocks are stretched, with corresponding entropic penal-
ties∼(Rcore2/Ncoreb2) andf 1/2 ln(R/Rcore), respectively. For crew-
cut micelles, the core contribution outweighs that from the
corona, and minimization ofFint + Fcore gives

For the hairy micelle,Fcoronacompetes withFint to give

An interesting prediction of this anaysis is that aggregation
numbers are determined entirely by the length of the insoluble
block.
Block copolymer micelles have been the subject of intense

experimental investigation for over 30 years.193,194 However,
these predictions have not been rigorously tested. Difficulties
include preparation of a series of samples with constantNcore,
sufficiently largeøAB that the narrow interface approximation
holds, sufficiently largeø between core and solvent that the
core is not swollen, choice of nonglassy core blocks (e.g., not
PS or PMMA) so that equilibration is possible, and the need
for labeled materials so that SANS can be used to resolveRcore
andRcorona.

5. Summary and Future Prospects

5.A. Summary. Long polymer chains possess substantial
conformational entropy, that in the absence of monomer-
monomer interactions leads to a characteristic random walk
scaling of chain size with molecular weight:Rg ∼ Mν, with ν
) 1/2. Excluded volume interactions in a good solvent cause
the chain to swell andν ) 0.588, whereas in a poor solvent,
the coils can collapse andν ) 1/3. Alternatively, chains that
are stiff can exhibit effective exponents that approach the rod
limit of 1. The stiffness may originate in local steric constraints
or from strong interactions, such as electrostatic repulsion
between like charges on a polyelectrolyte. Strong interactions

can also lead to entropic frustration: chains become trapped in
conformations that correspond to deep local minima in phase
space.
The chain trajectory may be described by a diffusion equation,

with the addition of a potential term that requires a self-
consistent solution. The enthalpic interactions embodied in this
potential compete with the entropic drive toward randomness
to establish the equilibrium average conformation. This ap-
proach is particularly powerful in describing “tethered” chains:
polymers in which one monomer is confined to an interface.
Steric crowding of tethered chains produces a “brush”: chains
stretch away from the interface to reduce unfavorable monomer-
monomer contacts. This produces new values of the size
exponent,e.g., ν ) 2/3 for strongly segregated block copolymers
andν ) 1 for chains anchored to a planar interface. Interfaces
also reduce conformational entropy in the absence of tethering,
leading to near-surface segregation effects that decay over length
scales on the order ofRg.
The dynamics of flexible chains are often modeled success-

fully with systems of “beads”spoint sources of friction with
the environmentsconnected by elastic “springs”srepresenting
the entropy of flexible chain segments. However, such idealiza-
tions break down at short time scales, when local structural
details become important, and at high rates of strain. In dilute
solution the dynamic properties are rather well understood; the
dominant force on a chain segment, beyond the frictional and
spring forces, is due to through-space hydrodynamic interactions
among all the segments. In melts chain uncrossability leads to
the phenomenon of entanglement, whereby long chains behave
as though subject to long-lived, transient cross-links. The
reptation model provides the most successful treatment of
dynamics in this regime, but significant questions persist.
Furthermore, the crossover from semidilute solution to entangled
chain dynamics remains controversial.
Polymer mixtures, particularly copolymers and blends, com-

bine thermodynamics and dynamics in ways that have both
broad fundamental and technological implications. Although
mean-field theory provides a successful framework for interpret-
ing the phenomenology, quantitative free energy calculations
are generally discouragingly complicated. Both of these feaures
reflect the large molecular size: many interaction sites per
molecule make mean-field theory more relevant but magnify
the effect of any uncertainty in computing the local interactions.
The time evolution of structure in phase separating systems
remains a fertile area, particularly for asymmetric mixtures and
blends with copolymer additives. Block copolymer melts
continue to provide morphological surprises, and their rich
dynamic properties are just beginning to be explored.
5.B. Future Prospects.A recent report examines the state

of polymer science and engineering in both breadth and detail,
with a particular view toward identifying areas for future
research emphasis, based primarily on their connections to issues
of national importance.1 Specific recommendations are offered
about advanced technological applications, materials processing,
synthesis, characterization, theory, and simulations. These
reflect the wisdom and input of a wide range of scientists and
engineers. Our comments below have a rather different
perspective. First, we are much more narrowly concerned with
problem areas of potential interest to physical chemists, although
we encourage a broad definition of that discipline. Second, we
are not charged with strategic or economic concerns and can
concentrate entirely on the underlying science. However, it is
one of the great virtues of polymer physical chemistry that the
distance between fundamental science and technological ap-
plication is rarely very great. Third, rather than offer specific

Figure 22. Schematic illustration of “hairy” and “crew-cut” micelles.
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recommendations, we cater to our own prejudices and simply
identify five broad, interwoven themes that we expect to figure
prominently in the near future.
(i) Polymers as Model Thermodynamic Systems.Polymers

afford unique opportunities for detailed study of the thermo-
dynamics of “soft” condensed matter, such as self-assembly
processes and phase transitions. There are at least five reasons
for this. First, polymers, by virtue of their molecular size, tend
to be more amenable to mean-field analysis. Second, interaction
strengths may be tuned with exquisite resolution, through control
of either molecular weight or chemical structure. Third, the
natural length scales are ideally suited to quantitative analysis
by scattering and, increasingly, by microscopy. Fourth, the
inherently long relaxation times permit monitoring of compli-
cated kinetic processes in full detail. Fifth, the evolving
microstructures are often sufficently robust that they may be
quenched, for example for off-line structural analysis.
(ii) Bridging the Gap between Nanoscale and Microscale.

Materials with precise two- or three-dimensional structures tend
to be assembled from atomic or small molecule constituents,
with features on the 1-10 Å scale, or processed from the bulk,
with resolution on the 0.1-1 µm scale. Polymers naturally
bridge this gap, as their characteristic dimensions lie in the 10-
103 Å range. Block copolymers, blends, and semicrystalline
and liquid crystalline polymers are all examples of systems
which can form controlled morphologies in this regime. The
thermodynamic factors that underlie a given equilibrium mor-
phology generally feature a subtle competition between entropic
and energetic terms, while kinetic considerations bring in all
the complexity of cooperative chain dynamics. Sophisticated
theoretical analysis of such materials under processing condi-
tions presents an important challenge.
(iii) Biological Paradigm I: Increased Control of Molecular

Architecture. Free radical copolymerization and biological
synthesis of proteins represent extremes in the preparation of
polymer materials. In the former, there is little control over
chain length, chain length distribution, composition, monomer
sequence, or sterochemistry of addition, whereas in the latter,
nature draws from a pool of 20 monomers and exerts precise
control over the addition of every unit. A major current focus
of polymer synthetic chemistry is to emulate nature to a greater
degree and particularly in the control of sequence. Although
this might appear to lie outside the province of physical
chemistry, it does not; the design of appropriate target molecules,
“heteropolymers” with particular functionalities in partic-
ular locations, depends on clear ideas for desired properties.
For example, efficient imitation of sophisticated biological
functions by synthetic polymers will require explicit models for
a minimal set of necessary molecular attributes. The statistical
mechanics of nonergodic systems will play an increasingly
important role.
(iV) Biological Paradigm II: Functional Soft Materials

through Multiple Interactions.Biological systems often function
through a delicate balance among different interactionsshydrogen
bonding, hydrophobic/hydrophilic domains, partially screened
electrostatics, acid/base functionalitiesswhereas a given syn-
thetic polymer exhibits only one or two nonspecific interactions.
One consequence of the multiple interaction approach is the
ability of biological systems to generate strong responses to
weak stimuli in very selective ways. Synthetic “soft”
materialssgels, copolymers, liquid crystals, surfactant
mixturessoffer rich opportunities for developing molecular
systems with the sophistication of their biological counterparts,
but ultimately with superior efficiency, due to prior selection
of a limited set of target functions.

(V) Interfacial Properties and the Transition from Two to
Three Dimensions.Many applications of polymers rely on
interfacial properties; adhesives, coatings, and surfactants are
obvious examples. Yet, only recently has a molecular under-
standing of polymers near surfaces progressed rapidly. Poly-
mers are rarely strictly confined to two dimensions, as molecular
size guarantees that effects of a surface are felt tens to hundreds
of angstroms away. There are thus many “bulk” polymers,
block copolymers being a prime example, for which the majority
of the material is interfacial in character, and the resulting
properties are not simply reflective of either two- or three-
dimensional materials. Recent work has emphasized structural
features along the direction normal to the surface, and rather
little is known about the control of in-plane molecular arrange-
ment or pattern formation. Such control could open new
horizons in the preparation of tailored surfaces and interfaces;
the function of a cell membrane provides another relevant
biological paradigm. The design of interfaces between polymers
and other classes of materialssmetals, semiconductors,
ceramicssalso promises to be a fruitful area.
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